
Evolving Deep Neural Networks for Continuous
Learning

Bruna Atamanczuk1, Kurt Arve Skipenes Karadas2, Bikash Agrawal3, and
Antorweep Chakravorty2

1 Aker BP, Norway
2 University of Stavanger, Norway

3 Simplifai AS, Norway

Abstract. Continuous learning plays a crucial role in advancing the
field of machine learning by addressing the challenges posed by evolving
data and complex learning tasks. This paper presents a novel approach
to address the challenges of continuous learning. Inspired by evolutionary
strategies, the approach introduces perturbations to the weights and bi-
ases of a neural network while leveraging backpropagation. The method
demonstrates stable or improved accuracy for the 12 scenarios investi-
gated without catastrophic forgetting. The experiments were conducted
on three benchmark datasets, MNIST, Fashion-MNIST and CIFAR-10.
Furthermore, different CNN models were used to evaluate the approach.
The data was split considering stratified and non-stratified sampling and
with and without a missing class. The approach adapts to the new class
without compromising performance and offers scalability in real-world
scenarios. Overall, it shows promise in maintaining accuracy and adapt-
ing to changing data conditions while retaining knowledge from previous
tasks.

Keywords: Deep Learning · Artificial Intelligence · Continuous Learn-
ing · Evolutionary Algorithms · Evolutionary Strategy

1 Introduction

Continuous Learning (CL) is a sub-field of Machine Learning (ML) that focuses
on refining and enhancing models throughout their entire life cycle, enabling
them to learn and improve even after deployment. Unlike traditional machine
learning approaches, CL recognizes the need for ongoing model adaptation to
new data and changing environments. This ensures that models remain relevant
and effective, providing businesses with a competitive advantage in dynamic
technological landscapes. CL addresses the challenge of adapting models to new
data without forgetting previously learned knowledge [15], making it crucial
for real-world applications like image classification, semantic segmentation, and
object detection [13]. By allowing models to learn new classes incrementally
and retain previous knowledge, CL offers a more efficient solution compared to
retraining models from scratch.



2 B. Atamanczuk et al.

In this paper, the term “continuous learning” will be utilized, although it
is worth noting that the literature may also refer to this concept as “lifelong
learning” or “incremental learning”. The main idea behind CL is to train ML
models sequentially, where new data is added over time allowing the model to
learn new tasks. As more data is added, it is expected that the model will be
able to incrementally learn and consolidate knowledge without losing accuracy.

When developing continuous learning models, it is crucial to differentiate be-
tween various scenarios that may arise. In the context of classification tasks, the
following situations can occur when new data is added to the models [14, 15]: 1)
In the instance incremental scenario, the number of classes remains constant, but
new instances become available at each learning stage. 2) The class incremental
scenario involves the addition of new classes, resulting in changes to the statis-
tical properties of the features. 3) The instance and class incremental scenario
occurs when both new instances and classes become available simultaneously,
introducing new training patterns for both known and unknown classes.

The primary challenge in continuous learning revolves around mitigating
catastrophic forgetting, where previously learned information is lost when adapt-
ing to new tasks. Various methods and strategies are employed to address this
issue in classification tasks. Architectural strategies modify the model’s architec-
ture to allow for the learning of new tasks without forgetting the knowledge ac-
quired from previous tasks [15, 17, 20]. Regularization strategies aim to optimize
the parameter weights for the tasks without altering the model’s architecture
[5, 8, 12, 15]. The rehearsal strategy [19] involves retaining a subset of previous
data, allowing the model to review old knowledge while learning new informa-
tion. A more robust approach is the pseudo-rehearsal method [19], which avoids
accessing the original training data. Instead, a generator is constructed to learn
the distribution of input data and generate batches of pseudo data that closely
resemble the distribution of the old data when the model learns new knowledge.

This work focuses on Evolutionary Strategies (ES) and their usage to improve
the quality of solutions through adaptive modifications of artificial neural net-
work weights within a continuous learning setup. ES is an approach within the
field of Evolutionary Algorithms (EAs) that introduces random perturbations
to the current solutions, in order to explore the search space and potentially
discover better solutions.

The subsequent section provides a summary of existing research on contin-
uous learning and outlines the associated challenges. The related work section
offers an overview of evolutionary strategies, optimization techniques applied to
neural networks, which will serve as the foundation for a new approach to con-
tinuous learning tasks. The methodology section introduces a novel approach
for addressing continuous learning problems and details the experimental setup
and evaluation metrics employed. The results section presents the performance
and outcomes achieved through the implementation of the proposed evolution-
ary method on various datasets, with a comprehensive analysis of each dataset’s
results. In the conclusion, the paper summarizes the main findings and contribu-



Evolving Deep Neural Networks for Continuous Learning 3

tions to the field of class continuous learning, along with suggestions for future
research endeavors.

2 Related Work

Evolutionary algorithms have been developed as a family of optimization algo-
rithms that take inspiration from the biological evolution process. This process
occurs constantly in nature and increases the diversity in the population of every
living species [2].

The basic procedure followed to implement EAs is to create a population of
candidate solutions to a problem and use the main principles of evolutionary
methods, such as mutation, reproduction and natural selection to evolve this
population over a number of generations [2, 4, 7]. In general, the primary focus
of EAs lies in adapting these concepts to suit the specific characteristics of the
problem addressed. Mathematically, the problem is modelled as the population
and then a cost function is applied to act as the environment. The main goal is
to find the solutions with the highest fitness, which is determined by the cost
function [2].

In general, EAs encompass various approaches such as Evolutionary Strat-
egy (ES), Evolutionary Programming (EP), and Genetic Algorithm (GA). These
algorithms share a common objective of leveraging biological evolution mecha-
nisms to enhance computational problem-solving capabilities [4]. In the case of
ES, the algorithm aims to discover better solutions to a problem by introducing
random perturbations to the current solution. This process, known as mutation,
is a key characteristic of ES [6]. Through mutation, offspring solutions are gen-
erated and evaluated based on their fitness. The fittest individuals are selected
to form the basis for the next generation, while less fit individuals are either
discarded or have a lower chance of contributing to the next generation.

The first algorithms for ES were presented in the early 1960s by the re-
searchers Rechenberg and Schwefel [1, 6], using a Gaussian distribution with zero
mean and σ standard deviation, N (0, σ2) to create the mutation of the offspring
solutions [6]. In the recent versions of this approach, however, ES is portrayed
as a black-box stochastic optimization technique [23], with less emphasis on its
connection to biological evolution [21]. Intuitively, the optimization process can
be described as an operation of “guess and check”, where the general idea is that
random parameters are initially chosen and then subsequently adjusted through
two steps: 1) random tweaks are made to the guess, and 2) slight adjustments
are then made towards more successful tweaks [21].

The optimization process, in this case, can be seen as a form of Reinforce-
ment Learning (RL) [21] and have been successfully applied to two RL bench-
mark tasks: the Atari game-playing and the Multi-Joint dynamics with Contact
(MuJoCo) control tasks. On a higher level, the first task consists of designing a
model to successfully achieve superhuman results in classic Atari games, whereas
the second task refers to a physics engine that is widely used for developing con-
tinuous control agents. For both cases, the main idea is the same: to train a



4 B. Atamanczuk et al.

function to describe the behaviour of an agent that interacts with some given
environment [21]. This function is usually a neural network, that rewards the
agent if it takes any of the allowed actions, for example, wins a game.

3 Designing evolutionary neural networks

The conventional training process of a neural network relies on the use of the
Back Propagation (BP) algorithm, which employs gradient descent to find the
closest optimal solution starting from a random point. However, due to the use
of gradient, the BP algorithm presents some drawbacks such as the potential for
getting stagnated in local minima and slow convergence [16]. In general, EAs have
been employed to find optimal values for neural networks as an alternative to the
BP algorithm. Evolutionary strategies have shown promising results in various
reinforcement learning tasks [22], but their application in continuous learning
optimization remains unexplored, to the best of the authors’ knowledge.

4 Proposed approach

The proposed approach centers around a novel method to enhance the perfor-
mance of neural networks under evolving data conditions. The core idea involves
incorporating perturbations into the weights and biases of the network. Initially,
a model M0 is trained using the available training data. As more data becomes
available at different time periods, the model is duplicated, and random noise is
introduced to the weights and biases, to create mutated copies, {M01 , . . . ,M0N }
where N is the number of desired mutations. Each newly created model is then
trained using the additional data, and its accuracy is assessed. This process is
repeated for a predetermined number of iterations. The accuracy of each mu-
tated model serves as input for calculating a weighted average W̄ of the weights
and biases. Thereafter, this information is utilized to generate a new model,
MES , which is subsequently employed to make predictions on unseen data. The
proposed procedure is outlined in Algorithm 1.

Algorithm 1 Proposed approach

for each mutation M0N do
Clone model M0

Draw zi from the Uniform[0, 1] distribution
Wi = Wi ∗ zi ▷ Mutating weights
bi = bi ∗ zi ▷ Mutating biases
Train model using the new training data
Evaluate the model
Save accuracy

end for
Calculate the weighted average W̄ of weights and biases using Equation 1
Compile and evaluate the offspring model, MES , utilizing test dataset



Evolving Deep Neural Networks for Continuous Learning 5

As described in Algorithm 1, the weighted average of the weights and biases
is obtained by Equation 1.

W̄ =

∑N
i=1 Wi · acci∑N

i=1 acci
(1)

Where W̄ represents the average weights and biases matrices. Additionally,
Wi and acci denote the weights and biases, as well as the accuracy of the mutated
models {M01 , . . . ,M0N }.

5 Experimental setup

To perform the experiments included in this paper, Python 3.10 was used. The
libraries employed were standard data science libraries such as Keras, Matplotlib,
NumPy, scikit-learn and TensorFlow. The code was run in an NVIDIA Tesla T4
GPU from Google Colab. Three different datasets were used for training and
evaluating the evolutionary strategy:

– MNIST [11] dataset consists of handwritten digits having 10 classes, from 0
to 9. It contains 60,000 training images and 10,000 test images. Each image
is a grayscale image in 28 x 28 pixels.

– Fashion-MNIST [24] dataset is originating from Zalando. It consists of
60,000 images in the training set and 10,000 images in the test set. Each
image is a grayscale image in 28 x 28 pixels. There are 10 different classes.

– CIFAR-10 [10] dataset consists of images of various transportation means
and animals. It comprises 60,000 color images with shape 32 x 32 pixels in
10 classes. There are 50,000 images for training and 10,000 images for the
test set.

The datasets underwent minimal preprocessing due to the absence of missing
values or outliers. Input images were normalized by dividing them by 255, and
categorical labels were converted to binary vectors using one-hot encoding. The
training data was divided into subsets using an 80-20 split, simulating scenarios
where data becomes available at different time intervals. In some cases, one class
was intentionally excluded from the larger training subset and allocated to a
smaller subset. The data splitting was performed with and without stratification.
Overall, four scenarios were analyzed for each dataset: “All classes, stratified”,
“All classes”, “Missing class, stratified”, and “Missing class”. Table 1 summarizes
the dimensions of the training data for each scenario, providing an overview of
the variations introduced by the preprocessing and partitioning strategies.

Furthermore, for each dataset a CNN model was developed. For the MNIST
and Fashion-MNIST datasets, the same model architecture was used. It consisted
of a CNN model with a 2D Convolutional layer with 32 filters, a kernel size of
3x3, and an input shape of (28, 28, 1). It was followed by a MaxPooling operation
with a pool size of (2, 2). The second layer was another 2D Convolutional layer
with 64 filters, a kernel size of 3x3, and ReLU activation. It was again followed



6 B. Atamanczuk et al.

Table 1. Dimensions of subsets after splitting

Dataset Model
Large
subset

Small
subset

MNIST
All classes, with and without stratification 48,000 12,000
Missing class, with and without stratification 43,266 16,734

Fashion-
MNIST

All classes, with and without stratification 48,000 12,000
Missing class, stratified 43,200 16,800
Missing class 43,145 16,855

CIFAR-
10

All classes, with and without stratification 40,000 10,000
Missing class, stratified 36,000 14,000
Missing class 35,996 14,004

by a MaxPooling operation with a pool size of (2, 2). The model then includes
a fully connected layer with 128 units and ReLU activation. Finally, an output
layer with softmax activation consisting of 10 units was added to predict class
probabilities.

The architecture used for the CIFAR-10 dataset consisted of a 2D Convolu-
tional layer with 32 filters, a kernel size of 3x3, an input shape of (32, 32, 3),
and ReLU activation. It was followed by another 2D Convolutional layer with 32
filters, a kernel size of 3x3, and ReLU activation. A MaxPooling operation was
then applied. A Dropout layer with a rate of 0.25 is added to reduce overfitting.
The second layer consisted of a 2D Convolutional layer with 64 filters, a kernel
size of 3x3, and ReLU activation. This was followed by another 2D Convolu-
tional layer with 64 filters, a kernel size of 3x3, and ReLU activation. Another
MaxPooling operation was applied, followed by a Dropout layer with a rate of
0.25 to further prevent overfitting. Next, a Flatten layer was added to convert
the 2D feature maps into a 1D vector. This was followed by a fully connected
layer with 512 units and ReLU activation. Again, a Dropout layer with a rate of
0.5 was introduced. Finally, an output layer consisting of 10 units and softmax
activation was added.

For each of the neural network architectures described, a model was initial-
ized with random weights and biases. Thereafter, the model M0 was created by
applying TensorFlow’s clone_model function. The model M0 was then trained
using the larger subset of training data. Then, the trained model was used to
create mutated copies, {M01 , . . . ,M0N }. This was achieved by introducing ran-
dom noise, drawn from the Uniform[0, 1] distribution, to the model’s weights
and biases. Afterwards, these mutations were trained using the smaller subset
of training data. Here, a validation split of 10% was used. The validation ac-
curacy was monitored during the training process and further used to calculate
the weighted average of the weights and biases for the mutated models. Also, an
EarlyStopping callback was defined with patience of 3.

Finally, a new model was created from the weighted averages and evaluated
on the test data. The final model is later denoted as ES model (MES) or offspring



Evolving Deep Neural Networks for Continuous Learning 7

model. To assess the performance and effectiveness of the continuous training
approach using evolutionary strategy, clones of M0 were mutated 3, 5, 10, 15
and 50 times, respectively.

Prior to conducting the experiments detailed above, baseline models with
identical architectures to the ES models were trained on the entire training data
for the purpose of comparison. A replica of the model initialized with random
weights and biases, referred to as Mbaseline, was trained using the complete
training set.

6 Evaluation metrics

In order to assess the performance and effectiveness of the models developed in
this work, the metrics described below were employed. It is important for the
reader to understand that the objective was not solely focused on achieving the
highest performance for the datasets under consideration. Instead, the primary
aim was to investigate the application of evolutionary strategy in the context of
continuous learning.

6.1 Confusion Matrix

The confusion matrix provides a clear and concise overview of how well a classi-
fier’s predictions match the actual outcomes. Typically, the predicted classes are
organized horizontally, while the actual labels are arranged vertically, although
this order can be reversed [9]. The elements on the diagonal of the matrix of-
fer insight into the classifier’s performance by showcasing accurate predictions,
while the off-diagonal elements indicate the instances where the classifier made
incorrect predictions.

The confusion matrix is often denoted by A(i, j), which can be used to cal-
culate several evaluation metrics. However, in this report, accuracy has been
selected as the metric of choice due to its simplicity. The authors suggest that
readers take into account additional evaluation metrics based on their specific
use case. While the confusion matrix provides valuable insights into a classifier’s
performance, it may not capture all aspects of interest.

6.2 Accuracy

Accuracy serves as a metric to assess a classifier’s ability to accurately classify
samples. It is determined by calculating the ratio of correctly classified samples
to the total number of samples [9]. Mathematically, accuracy can be calculated
as:

Accuracy =

∑M
i=1 A(i, i)∑M

i=1

∑M
j=1 A(i, j)

(2)

where A(i, i) represent the diagonal elements and the A(i, j) refer to the
off-diagonal elements of the confusion matrix.



8 B. Atamanczuk et al.

7 Results

The results are presented in Table 2 and visually represented in Fig. 1 to enable
an overall performance comparison. In the missing class cases, class number 6
was excluded from the larger subsets of the training data, and added back to the
smaller portion of training data. All models were evaluated using the test data.

It can be noticed that the accuracy remains rather stable regardless of the
number of mutations used. It is also worth noticing that accuracy of the baseline
model and the model M0 were higher than any of the ES models considering
all classes. However, when there is a class missing, the ES models learn the new
patterns, achieving a high accuracy than the M0 model. On the other hand,
the baseline model still achieved higher performance. Moreover, it is essential to
acknowledge that developing a model trained on the entire dataset, may not be
feasible or scalable in real-world scenarios. The comparison to the M0 model is
more relevant in this context.

Table 2. Summary of performance of the models

Dataset Model Mbaseline M0

ES models
MES3 MES5 MES10 MES15 MES50

MNIST

All classes
(stratified)

0.9903 0.9885 0.9886 0.9888 0.9895 0.9896 0.9899

All classes 0.9907 0.9890 0.9899 0.9893 0.9893 0.9896 0.9892
Missing class
(stratified)

0.9895 0.8959 0.9869 0.9881 0.9886 0.9881 0.9878

Missing class 0.9895 0.8960 0.9877 0.9877 0.9878 0.9877 0.9878

Fashion-
MNIST

All classes
(stratified)

0.9081 0.9121 0.9061 0.9073 0.9064 0.9051 0.9072

All classes 0.9066 0.9000 0.9022 0.8945 0.9046 0.9026 0.9044
Missing class
(stratified)

0.9022 0.8579 0.8812 0.8847 0.8900 0.8923 0.8903

Missing class 0.9043 0.8546 0.8921 0.8952 0.8951 0.8914 0.8940

CIFAR-
10

All classes
(stratified)

0.7846 0.7669 0.7618 0.7613 0.7691 0.7611 0.7649

All classes 0.7886 0.7718 0.7612 0.7666 0.7692 0.7662 0.7733
Missing class
(stratified)

0.7843 0.6902 0.7098 0.7247 0.7271 0.7381 0.7227

Missing class 0.7902 0.6896 0.7317 0.7401 0.7341 0.7503 0.7337

The results reveal several important findings as presented in Fig. 1. Firstly,
the accuracy of the models remains consistent when utilizing evolutionary strate-
gies for continuous learning, demonstrating their ability to maintain performance
throughout the learning process. Secondly, the evolutionary strategy models
exhibit enhanced performance when dealing with datasets containing missing



Evolving Deep Neural Networks for Continuous Learning 9

classes compared to the initial model, showcasing the algorithm’s capacity to
learn and adapt to new knowledge. Additionally, the baseline model achieves
higher accuracy, as expected, especially when there is a missing class, due to
its utilization of all available data and consistent class distributions. However,
it is worth noting that such models may encounter feasibility and scalability
challenges in practical scenarios.

Fig. 1. Summary of accuracy for the models considering the different splits and datasets

Another interesting result emerges when looking at the confusion matrices
obtained for the models. In this paper, for the sake of simplicity, the results are
shown only for the Fashion-MNIST dataset and omitted for the remaining cases.
However, a similar rationale can be extrapolated to all cases where there was a
missing class.



10 B. Atamanczuk et al.

Figure 2 presents the confusion matrices for the baseline model and the top-
performing ES model for the Fashion-MNIST dataset, considering a missing class
and stratified split. Here, there is a notable difference as class 6 is not present
in the model M0, which was used to develop the MES model. Moreover, this
particular class proves to be challenging to predict, even for the baseline model
trained with all available data. The ES model demonstrates enhanced perfor-
mance specifically in classes 3 and 4, with an observed increase of 8.8% and
8.0%, respectively in the correctly classified samples (true positives). Addition-
ally, there is an increase in false positives for classes 3 and 4, compared to the
baseline model. However, the number of false negatives decreased for the same
classes. Nevertheless, the ES models are capable of achieving reasonable accu-
racy, even when encountering a new class and facing a slight class imbalance
resulting from the inclusion of new data in the training dataset.

Fig. 2. Summary of accuracy for the models considering the different splits and datasets

Focusing on the different scenarios analyzed, it is worth examining the vari-
ations between the best-performing ES model and the baseline model. In the
context of All classes scenarios, the maximum difference between the baseline
model and the best-performing ES model was 1.6%, as observed specifically in
the CIFAR-10 dataset. On the other hand, when considering the Missing class
scenarios, the maximum difference between the baseline model and the best-
performing ES model was 4.3%, also observed in the CIFAR-10 dataset.

However, it is important to recognize that creating a model trained on the
entire dataset might not be practical or scalable in real-world situations. Thus,
a more relevant comparison would be between the M0 model and the most
successful ES model, MES . Notably, for the All classes scenarios, the maxi-
mum difference between the best-performing ES model and the M0 model was



Evolving Deep Neural Networks for Continuous Learning 11

a mere 0.5%. Moreover, the outcomes became more significant when observing
the Missing class scenarios. Across the datasets, the disparity between M0 and
the best-performing ES model varied. In the case of the MNIST dataset, both
the stratified and non-stratified splits displayed a remarkable margin of approxi-
mately 9.2% in favor of the best-performingMES model. For the Fashion-MNIST
dataset, the stratified case exhibited a difference of 3.4%, while the non-stratified
case showed a difference of 4.1%. In comparison, the CIFAR-10 dataset, being
more complex, demonstrated even larger variations of 4.8% and 6.1% for the
stratified and non-stratified splits, respectively.

The aim of this paper was to demonstrate the effective application of evolu-
tionary strategies in situations where training models on the complete dataset
are impractical due to evolving data distributions or the availability of addi-
tional data. Usually, training models on entire datasets require significant time
and computational resources. Moreover, accumulated data over the years can
become massive. Thus, posing challenges in terms of cost and time needed for
training the entire dataset. In summary, these findings highlight the efficacy and
feasibility of employing evolutionary strategies for continuous learning. The pre-
sented approach facilitates faster and more efficient progress in production, as
they ensure accuracy, adaptability to changing data, and enhanced predictions
for specific classes.

8 Conclusion

This paper introduces an innovative solution to tackle the challenges of contin-
uous learning, a rapidly advancing field in machine learning. Unlike traditional
continuous learning methods that typically require retraining the entire model
or making architectural changes to prevent obsolescence over time, this work
proposes a new approach inspired by evolutionary strategy. The effectiveness of
the suggested method was evaluated on three distinct datasets, and the results
showed consistent or even improved accuracy over time, without experiencing
catastrophic forgetting. Although the continuous learning models slightly trailed
the baseline model in terms of overall performance, they exhibited promising out-
comes, demonstrating their capability and potential in handling evolving data
scenarios.

To summarize, the presented evolutionary strategy-based approach shows
great potential for real-world applications under changing data conditions. By
introducing perturbations and leveraging the average weights and biases of mu-
tated models, this method showcases the ability to maintain accuracy and adapt
to new data while retaining knowledge from previous tasks.

Future work

In order to advance the current research, further investigations should be con-
ducted regarding the cloning and mutation process of the model, M0, along with
the calculation of weighted averages based on accuracy. One potential approach



12 B. Atamanczuk et al.

involves establishing a threshold for accuracy, whereby underperforming models
are discarded during the weighted average calculation. Moreover, it is worth con-
sidering the utilization of a different metric, other than accuracy, for evaluating
the ES model, particularly when addressing problems involving class imbalance
[18]. Numerous metrics, such as the ones proposed by [3] could be considered in
this regard.

Subsequent research efforts should focus on the application of the proposed
approach to real-life datasets, as they typically offer a larger and more diverse
range of data. This will allow the creation of multiple ES models at different
time steps. Furthermore, it is suggested to test the approach using alternative
data splits, rather than adhering to the conventional 80-20 rule employed in
this study. For instance, a split ratio of 70-20-10 could be adopted to allow for
the examination of multiple time steps. Additionally, the potential impact of
training data size on the effectiveness of continuous training should be taken
into account.

It is also worth exploring hyperparameter optimization techniques, as they
are crucial to enhance the performance of the models. The models can be fine-
tuned by systematically optimizing the hyperparameters to achieve better re-
sults.

Finally, it is recommended to explore the application of the proposed ap-
proach in regression problems. While the current study focuses on classification
tasks, investigating its effectiveness in regression scenarios would provide valu-
able insights into its potential applicability across various domains.

References

1. Beyer, H.G., Schwefel, H.P.: Evolution strategies–a comprehensive introduction.
Natural computing 1, 3–52 (2002)

2. Câmara, D.: 1 - evolution and evolutionary algorithms. In: Câmara,
D. (ed.) Bio-inspired Networking, pp. 1–30. Elsevier (2015).
https://doi.org/https://doi.org/10.1016/B978-1-78548-021-8.50001-6,
https://www.sciencedirect.com/science/article/pii/B9781785480218500016

3. Dı́az-Rodŕıguez, N., Lomonaco, V., Filliat, D., Maltoni, D.: Don’t forget, there
is more than forgetting: new metrics for continual learning. arXiv preprint
arXiv:1810.13166 (2018)

4. Ding, S., Li, H., Su, C., Yu, J., Jin, F.: Evolutionary artificial neural networks: a
review. Artificial Intelligence Review 39(3) (2013)

5. Dutt, A.: Continual learning for image classification. Ph.D. thesis, Université
Grenoble Alpes (ComUE) (2019)

6. Eiben, A.E., Smith, J.E.: Evolution Strategies, pp. 71–87. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05094-1 4

7. Fogel, D.B.: An introduction to simulated evolutionary optimization. IEEE trans-
actions on neural networks 5(1), 3–14 (1994)

8. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G.,
Rusu, A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Has-
sabis, D., Clopath, C., Kumaran, D., Hadsell, R.: Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Academy of



Evolving Deep Neural Networks for Continuous Learning 13

Sciences 114(13), 3521–3526 (2017). https://doi.org/10.1073/pnas.1611835114,
https://dx.doi.org/10.1073/pnas.1611835114

9. Kotu, V., Deshpande, B.: Chapter 8 - model evaluation. In:
Kotu, V., Deshpande, B. (eds.) Data Science (Second Edition),
pp. 263–279. Morgan Kaufmann, second edition edn. (2019).
https://doi.org/https://doi.org/10.1016/B978-0-12-814761-0.00008-3,
https://www.sciencedirect.com/science/article/pii/B9780128147610000083

10. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)
11. LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database. ATT Labs

[Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010)
12. Li, Z., Hoiem, D.: Learning without forgetting (2017)
13. Liu, Y., Hong, X., Tao, X., Dong, S., Shi, J., Gong, Y.: Model behavior preserv-

ing for class-incremental learning. IEEE Transactions on Neural Networks and
Learning Systems pp. 1–12 (2022). https://doi.org/10.1109/tnnls.2022.3144183,
https://dx.doi.org/10.1109/tnnls.2022.3144183

14. Lomonaco, V., Maltoni, D.: Core50: a new dataset and benchmark
for continuous object recognition. In: Conference on Robot Learn-
ing. pp. 17–26. PMLR. https://doi.org/10.48550/arxiv.1705.03550,
https://dx.doi.org/10.48550/arxiv.1705.03550

15. Luo, Y., Yin, L., Bai, W., Mao, K.: An appraisal of incremental learning methods.
Entropy 22(11), 1190 (2020)

16. Mirjalili, S.: Evolutionary Feedforward Neural Networks, pp. 75–86. Springer Inter-
national Publishing, Cham (2019). https://doi.org/10.1007/978-3-319-93025-1 6

17. Polikar, R., Upda, L., Upda, S., Honavar, V.: Learn++: An incremental learning
algorithm for supervised neural networks. Systems, Man, and Cybernetics, Part
C: Applications and Reviews, IEEE Transactions on 31, 497 – 508 (12 2001).
https://doi.org/10.1109/5326.983933

18. Powers, D.M.: Evaluation: from precision, recall and f-measure to roc, informed-
ness, markedness and correlation. arXiv preprint arXiv:2010.16061 (2020)

19. Robins, A.: Catastrophic forgetting, rehearsal, and pseudorehearsal. Connection
Science 7(2), 123–146 (1995)

20. Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J.,
Kavukcuoglu, K., Pascanu, R., Hadsell, R.: Progressive neural networks (2022)

21. Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution
strategies as a scalable alternative to reinforcement learning (2017),
https://openai.com/research/evolution-strategies

22. Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as
a scalable alternative to reinforcement learning. arXiv pre-print server (2017).
https://doi.org/None arxiv:1703.03864, https://arxiv.org/abs/1703.03864

23. Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J., Schmidhuber, J.:
Natural evolution strategies. The Journal of Machine Learning Research 15(1),
949–980 (2014)

24. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. CoRR abs/1708.07747 (2017),
http://arxiv.org/abs/1708.07747


